Development of a broad-host synthetic biology toolbox for ralstonia eutropha and its application to engineering hydrocarbon biofuel production
نویسندگان
چکیده
BACKGROUND The chemoautotrophic bacterium Ralstonia eutropha can utilize H2/CO2 for growth under aerobic conditions. While this microbial host has great potential to be engineered to produce desired compounds (beyond polyhydroxybutyrate) directly from CO2, little work has been done to develop genetic part libraries to enable such endeavors. RESULTS We report the development of a toolbox for the metabolic engineering of Ralstonia eutropha H16. We have constructed a set of broad-host-range plasmids bearing a variety of origins of replication, promoters, 5' mRNA stem-loop structures, and ribosomal binding sites. Specifically, we analyzed the origins of replication pCM62 (IncP), pBBR1, pKT (IncQ), and their variants. We tested the promoters P(BAD), T7, P(xyls/PM), P(lacUV5), and variants thereof for inducible expression. We also evaluated a T7 mRNA stem-loop structure sequence and compared a set of ribosomal binding site (RBS) sequences derived from Escherichia coli, R. eutropha, and a computational RBS design tool. Finally, we employed the toolbox to optimize hydrocarbon production in R. eutropha and demonstrated a 6-fold titer improvement using the appropriate combination of parts. CONCLUSION We constructed and evaluated a versatile synthetic biology toolbox for Ralstonia eutropha metabolic engineering that could apply to other microbial hosts as well.
منابع مشابه
Application of the Taguchi Design for Production of Poly(β-hydroxybutyrate) by Ralstonia eutropha
The Taguchi design of experiments was used to test the relative importance of medium components and environmental factors on poly(β-hydroxybutyrate)(PHB) production by Ralstonia eutropha. The optimum condition was obtained as: fructose concentration, 15 g/L; C/N ratio, 7.4; agitation speed 200 rpm; culture time, 40 h; temperature, 25 ° C; seed age, 15 h. At optimu...
متن کاملApplication of the Plackett-Burman Statistical Design to Optimize Poly(β-hydroxybutyrate) Production by Ralstonia eutropha in Batch Culture
متن کامل
Simulation and Model Validation of Batch PHB Production Process Using Ralstonia eutropha
Mathematical modeling and simulation of microbial Polyhydroxybutyrate (PHB) production process is beneficial for optimization, design, and control purposes. In this study a batch model developed by Mulchandani et al., [1] was used to simulate the process in MATLAB environment. It was revealed that the kinetic model parameters were estimated off the optimal or at a local optimal point. There...
متن کاملInfluence of Matric Potential on Survival and Activity of Genetically Engineered Ralstonia eutropha H850Lr
Although the application of biodegradative genetically engineered micro organisms (GEMs) for bioremediation is very promising, the risks of their release should be assessed before their introduction into the environment. Lux-marked Ralstonia eutropha H850Lr (formerly Alcaligenes eutrophus H850Lr) was introduced into sterile and non-sterile soil microcosms at matric potentials ?2.11, ?30, ?750, ...
متن کاملProduction and purification of a soluble hydrogenase from Ralstonia eutropha H16 for potential hydrogen fuel cell applications
The soluble hydrogenase (SH) from Ralstonia eutropha H16 is a promising candidate enzyme for H2-based biofuel application as it favours H2 oxidation and is relatively oxygen-tolerant. In this report, bioprocess development studies undertaken to produce and purify an active SH are described, based on the methods previously reported [1], [2], [3], [4]. Our modifications are: •Upstream method opti...
متن کامل